首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64340篇
  免费   5536篇
  国内免费   4925篇
化学   30243篇
晶体学   854篇
力学   4516篇
综合类   592篇
数学   11064篇
物理学   27532篇
  2024年   80篇
  2023年   587篇
  2022年   997篇
  2021年   1398篇
  2020年   1673篇
  2019年   1657篇
  2018年   1544篇
  2017年   1847篇
  2016年   2202篇
  2015年   1831篇
  2014年   2617篇
  2013年   4848篇
  2012年   3197篇
  2011年   3584篇
  2010年   2815篇
  2009年   4028篇
  2008年   4149篇
  2007年   4590篇
  2006年   3834篇
  2005年   3084篇
  2004年   2671篇
  2003年   2766篇
  2002年   2685篇
  2001年   2174篇
  2000年   2003篇
  1999年   1648篇
  1998年   1602篇
  1997年   945篇
  1996年   907篇
  1995年   829篇
  1994年   903篇
  1993年   636篇
  1992年   710篇
  1991年   462篇
  1990年   435篇
  1989年   328篇
  1988年   304篇
  1987年   301篇
  1986年   260篇
  1985年   233篇
  1984年   246篇
  1983年   137篇
  1982年   200篇
  1981年   185篇
  1980年   115篇
  1979年   151篇
  1978年   109篇
  1977年   90篇
  1976年   43篇
  1973年   42篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
Tuning fluorescence colour of solid-state materials has become a topic of increasing interest for both fundamental mechanism study and practical applications such as sensors, optical recording and security printing. In this work, a fluorescent colour tuneable molecule BA-C16 is rationally designed and facilely synthesized by attaching flexible long alkyl chains to 2-hydroxybenzophenone azine ( BA ), which shows both aggregation-induced emission (AIE) and excited-state intramolecular proton transfer (ESIPT) characteristics. Compared to BA , the simple introduction of long alkyl chains in BA-C16 leads to an emission wavelength redshift from 542 to 558 nm. This strategy of extending emission wavelength is rarely reported, and is ascribed to the enlarged through-space π-conjugation between interplanar molecules in the aggregate of BA-C16 . Three crystals of BA-C16 are obtained with green, yellowish green and yellow emission. According to characterization by X-ray crystallography, X-ray powder diffraction and differential scanning calorimetry, alkyl chains play an important role in inducing different stacking modes of the three crystals, which further leads to polymorph-dependent fluorescence colour. BA-C16 exhibits tuneable solid-state fluorescence upon vapor fumigation, or annealing based on a transition between a “near-monomer” crystalline state and a “dimer” crystalline state. BA-C16 is further applied for rewritable fluorescence printing tuned by vapor- and thermal-treatment.  相似文献   
62.
We report the results of our investigation of magnetization and heat capacity on a series of compounds Ce1?xYxNiGe2 (x=0.1,0.2 and 0.4) under the influence of external magnetic field. Our studies of the thermodynamic quantity ?dM/dT on these compounds indicate that magnetic frustration persists in Ce0.9Y0.1NiGe2, as also reported for the parent compound CeNiGe2. The weak signature of this frustration is also noted in Ce0.8Y0.2NiGe2, whereas, it is suppressed in Ce0.6Y0.4NiGe2. Heat capacity studies on Ce0.9Y0.1NiGe2 and Ce0.8Y0.2NiGe2 indicate the presence of a new magnetic anomaly at high field which indicates that quantum criticality is absent in these compounds. However, for Ce0.6Y0.4NiGe2 such an anomaly is not noted. For this later compound, the magnetic field (H) and temperature (T) dependence of heat capacity and magnetization obey H/T scaling above critical fields. However, the obtained scaling critical parameter (δ) is 1.6, which is away from mean field value of 3. This deviation suggests the presence of unusual fluctuations and anomalous quantum criticality in these compounds. This unusual fluctuation may arise from disorderness induced by Y-substitution.  相似文献   
63.
The persistent, bioaccumulative, and toxic properties of certain per- and polyfluoroalkyl substances (PFAS) raise concerns for environmental and human health. This has led to the gradual phase-out from production and commerce of some legacy PFAS. Fluoroalkylether compounds (ether-PFAS) are among the fluorinated alternative chemicals that are beginning to be reported in impacted and background environments. Extensive monitoring activities were conducted since 2015–2019 to bridge knowledge gaps on the environmental fate and effects of ether-PFAS including F-53B (6:2 chlorinated polyfluoroalkyl ether sulfonate [6:2 Cl-PFAES] and 8:2 Cl-PFAES), Gen-X (hexafluoropropylene oxide dimer acid [HFPO-DA]), and ADONA (dodecafluoro-3H-4,8-dioxanonanoate). In recent years, advances in nontarget screening using high-resolution mass spectrometry have revealed the identities of other infrequently monitored ether-PFAS. In this critical review, we provide an up-to-date inventory of the structures of ether-PFAS discovered in the recent literature. Their environmental occurrence, fate, and effects are discussed on a comparative perspective with some legacy PFAS such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). Information on the methods employed for the quantitative and semi-quantitative analysis of ether-PFAS is also provided, including sample preparation and mass spectrometry analysis, analytical performance, and limitations. In particular, the compiled database of MS/MS fragment ions (n = 111) can be useful in spectrum interpretation of novel ether-PFAS. The concluding remarks open on possible research avenues and the challenges that remain to be addressed.  相似文献   
64.
In this communication, the study on the effect of Ni2+ substitution on structural, magnetic and electrical transport properties were performed in Pr0.75Na0.25Mn1-xNixO3 (x = 0–0.10) ceramics synthesized using conventional solid-state method. X-ray diffraction patterns showed that all samples were present in single phase and crystallized in orthorhombic structure with Pnma space group. Rietveld refinement analysis revealed unit cell volume slight increase with increase Ni concentration, thereby indicating partial substitution of Ni2+ at Mn3+. The presence majority of Ni2+ states in the compound were confirmed by X-ray photoelectron spectrum. Tolerance factor calculation suggested that Ni substitution exerted no strong effect on structural distortion. For un-doped sample (x = 0), AC susceptibility (χ′) against temperature (T) curve showed paramagnetic (PM)–antiferromagnetic(AFM) behavior at Neel temperature (TN) of approximately 170 K. Furthermore, resistivity (ρ) against temperature (T) curve showed an insulating behavior for the whole measured temperature range. The χ′ against T curve of x = 0 sample showed broad peak at approximately 218 K which was attributed to the onset of charge ordered (CO) state. No such broad peak was observed in Ni-substituted samples which indicated the weakening of CO state. Moreover, χ′ measurements exhibited successful inducement of PM–FM transition with Curie temperature (TC), decreasing from 132 K (x = 0.02) to 92 K (x = 0.08). Electrical resistivity measurement on samples (x = 0.02–0.08) displayed inducement of metal–insulator transition, where transition temperature (TMI) decreased and resistivity increased, with x before re-entrant insulating behavior at x = 0.10. Notably, upturn resistivity was observed below 40 K for x = 0.06 and 0.08 samples. The suppression of CO state and inducement of ferromagnetic-metallic (FMM) state beginning from x = 0.02 sample was attributed to the reduced degree of Jahn–Teller distortion and Coulomb interaction among Mn ions, as well as the presence of ferromagnetic superexchange (FM SE) interaction among Ni2+–O–Mn4+ which improved the alignment charge carrier spins and induced the double-exchange (DE) interaction among Mn3+–O–Mn4+. The decrease in TC and TMI with increased x may be due to the enhanced AFM SE interactions of Mn3+–O–Mn3+, Mn4+–O–Mn4+ and Ni2+–O–Ni2+ which decreased the FM SE interaction of Ni2+–O–Mn4+. Consequently, the effective DE interaction was decreased. In addition, the decreased metallic behavior and re-entrant insulating behavior for x = 0.10 sample was due to the strong AFM interaction between Ni2+ ions which consequently contributed to the suppression of FM SE and DE interactions. The observed upturn resistivity below 40 K for x = 0.06 and 0.08 samples was attributed to the Kondo-like effect which resulted from the interaction between itinerant conduction electron spin and localized spin impurity.  相似文献   
65.
Two highly ordered isonicotinamide (INA)‐functionalized mesoporous MCM‐41 materials supporting indium and thallium (MCM‐41‐INA‐In and MCM‐41‐INA‐Tl) have been developed using a covalent grafting method. A surface functionalization method has been applied to prepare Cl‐modified mesoporous MCM‐41 material. Condensation of this Cl‐functionalized MCM‐41 with INA leads to the formation of MCM‐41‐INA. The reaction of MCM‐41‐INA with In(NO3)3 or Tl(NO3)3 leads to the formation of MCM‐41‐INA‐In and MCM‐41‐INA‐Tl catalysts. The resulting materials were characterized using various techniques. These MCM‐41‐INA‐In and MCM‐41‐INA‐Tl catalysts show excellent catalytic performance in the selective oxidation of sulfides and thiols to their corresponding sulfoxides and disulfides. Finally, it is found that the anchored indium and thallium do not leach out from the surface of the mesoporous catalysts during reaction and the catalysts can be reused for seven repeat reaction runs without considerable loss of catalytic performance.  相似文献   
66.
The radius of spatial analyticity for solutions of the KdV equation is studied. It is shown that the analyticity radius does not decay faster than t?1/4 as time t goes to infinity. This improves the works of Selberg and da Silva (2017) [30] and Tesfahun (2017) [34]. Our strategy mainly relies on a higher order almost conservation law in Gevrey spaces, which is inspired by the I-method.  相似文献   
67.
Kinetics and mechanism of nitration of aromatic compounds using trichloroisocyanuric acid (TCCA)/NaNO2, TCCA-N,N-dimethyl formamide (TCCA-DMF)/NaNO2, and TCCA-N,N-dimethyl acetamide (TCCA-DMA)/NaNO2 under acid-free and Vilsmeier-Haack conditions. Reactions followed second-order kinetics with a first-order dependence on [Phenol] and [Nitrating agent] ([TCCA], [(TCCA-DMF)], or [(TCCA-DMA)] >> [NaNO2]). Reaction rates accelerated with the introduction of electron-donating groups and retarded with electron-withdrawing groups, but did not fit well into the Hammett's theory of linear free energy relationship or its modified forms like Brown-Okamoto or Yukawa-Tsuno equations. Rate data were analyzed by Charton's multiple linear regression analysis. Isokinetic temperature (β) values, obtained from Exner's theory for different protocols, are 403.7 K (TCCA-NaNO2), 365.8 K (TCCA-DMF)/NaNO2, and 358 K (TCCA-DMA)/NaNO2. These values are far above the experimental temperature range (303-323 K), indicating that the enthalpy factors are probably more important in controlling the reaction.  相似文献   
68.
By using the density functional theory (DFT) and Monte Carlo simulations (MCS) with the Heisenberg model, we have studied magnetic properties of the bulk perovskite YCrO3. The exchange couplings of the Heisenberg model and the magnetic anisotropy are investigated. The 110 direction in the crystalline structure of the compound has shown the minimum energy, it is the easy magnetic direction. Using Monte Carlo simulations, the magnetizations behavior, the effects of system parameters and the critical exponents of the compound YCrO3 are implemented. It is shown that the bulk perovskite YCrO3 belongs to the 3D Heisenberg universality class.  相似文献   
69.
We extend the method of Pizzo multiscale analysis for resonances introduced in [5] in order to infer analytic properties of resonances and eigenvalues (and their eigenprojections) as well as estimates for the localization of the spectrum of dilated Hamiltonians and norm-bounds for the corresponding resolvent operators, in neighborhoods of resonances and eigenvalues. We apply our method to the massless Spin–Boson model assuming a slight infrared regularization. We prove that the resonance and the ground-state eigenvalue (and their eigenprojections) are analytic with respect to the dilation parameter and the coupling constant. Moreover, we prove that the spectrum of the dilated Spin–Boson Hamiltonian in the neighborhood of the resonance and the ground-state eigenvalue is localized in two cones in the complex plane with vertices at the location of the resonance and the ground-state eigenvalue, respectively. Additionally, we provide norm-estimates for the resolvent of the dilated Spin–Boson Hamiltonian near the resonance and the ground-state eigenvalue. The topic of analyticity of eigenvalues and resonances has let to several studies and advances in the past. However, to the best of our knowledge, this is the first time that it is addressed from the perspective of Pizzo multiscale analysis. Once the multiscale analysis is set up our method gives easy access to analyticity: Essentially, it amounts to proving it for isolated eigenvalues only and use that uniform limits of analytic functions are analytic. The type of spectral and resolvent estimates that we prove are needed to control the time evolution including the scattering regime. The latter will be demonstrated in a forthcoming publication. The introduced multiscale method to study spectral and resolvent estimates follows its own inductive scheme and is independent (and different) from the method we apply to construct resonances.  相似文献   
70.
The practical application of advanced personalized electronics is inseparable from flexible, durable, and even self-healable energy storage devices. However, the mechanical and self-healing performance of supercapacitors is still limited at present. Herein, highly transparent, stretchable, and self-healable poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA)/poly(vinyl alcohol) (PVA)/LiCl polyelectrolytes were facilely prepared by one-step radical polymerization. The cooperation of PAMPSA and PVA significantly increased the mechanical and self-healing capacity of the polyelectrolyte, which exhibited superior stretchability of 938 %, stress of 112.68 kPa, good electrical performance (ionic conductivity up to 20.6 mS cm−1), and high healing efficiency of 92.68 % after 24 h. After assembly with polypyrrole-coated single-walled carbon nanotubes, the resulting as-prepared supercapacitor had excellent electrochemical properties with high areal capacitance of 297 mF cm−2 at 0.5 mA cm−2 and good rate capability (218 mF cm−2 at 5 mA cm−2). Besides, after cutting in two the supercapacitor recovered 99.2 % of its original specific capacitance after healing for 24 h at room temperature. The results also showed negligible change in the interior contact resistance of the supercapacitor after ten cutting/healing cycles. The present work provides a possible solution for the development of smart and durable energy storage devices with low cost for next-generation intelligent electronics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号